Sunday , September 20 2020

A calculator for the Terminal that renders beautiful math, Hacker News


  [a, ..., b] ************ ───────────── Ary Kary Nota ──────       ┌───────────────────────────────────────────────── ───────────────────┐     │ │     │ 1 │     │ ─── │     2 2 2 ⎜ e ⎟ │     │ In [1]: ─────   ─────────────────────────────────────   ⎜ ─── ⎟ │     │ 3 _______________________________ ⎣ 2 ⎦ │     │ ╱ ┌ π ┐ 2 ┌ π ┐ 2 │     ╱ ╱ Sin │ ─── │   Cos │ ─── │ │     │ ╲╱ └ 2 ┘ └ 2 ┘ │     │ │     │ │     │ Out [1]: 3.    │ │     ├───────────────────────────────────────────────── ──────┬────────────┘       Nota is a powerful terminal calculator with rich     │ mathematical notation and chart rendering. It gives │       you a beautiful language that is readable and easy to     │ type and then renders your input into a beautiful │       notation with result     └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘                      ┌───────────────────────────────────────────────── ───────┐                    │ │                    │ In [2]: arthEarth's Radius⟩ *** 1666666666666665                    │ │                    │ Out [2]: 618033988749895                    │ │                    │ │                    3 4 3 │                    │ In [3]: arthEarth's Volume⟩ ≡ ─── x π x Earth's Radius │                    │ 3 │                    │ │                    (Out [3]: 1.90                    │ │                    └──────────────┬────────────────────────────────── ───────┤                                     Nota's Language offers beautiful ideas                                   │ in its design; such as having variables │                                     that accept spaces and apostrophe                                   └└───────────────       ┌───────────────────────────────────────────────── ─────────────────┐     │ First you should have GNU Make and Haskell Stack installed. Then │     │ You have to run these commands within your terminal to install │     A nota. This will give you the command nota that you can run: │     └──┬────────────────────────────────────────────── ┬────────────────┘─ ─ ┐        It git clone http://codes.kary.us/nota/nota.git │ Installation        Cd nota ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘        Install make install │        └──────────────────────────────────────────────┘                       ┌──────────────────┐                    │ Language Grammar │                    └────┬─────────────┘                         │                         ├───────────────────────────────────────────────── ──┐       Grammar Component │ Description │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Normal Numbers │ Numbers in Nota can be in the normal form. │                         │ Integer form like 0 or 618033988749895. And in the decimal │                         Like form like 1. 42480 or 0.5 but remember decimal only │                         │ numbers cannot be without zero: so 0.5 is │                         But possible but .5 is not. │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Hex Number │ Hexadecimal Numbers are supported and must be │                         │ started with the 0x sign. So 0xfff is a number as │                         As well as 0x 42480 │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Names │ Nota approaches identifiers much differently than │                         │ any other language. In Nota identifiers can have │                         │ space within them, so no more camelCase, │                         Asc PascalCase, --kebab-case, what_ever; You can │                         │ simply write things like size of the planet and │                         Works it works. │                         │ │                         │ Also to make it more interesting, Nota even gives │                         'You' (apostrophe) and therefore you can have │                         Like things like radius of earth or earth's radius. │                         │ │                         │ Numbers are also allowed (but not for the first │                         │ letter). You can have names like: X5 or X 5 and │                         │ etc. │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Binary Operator │ Binary operators in Nota are:  , -, *, /, ^,%, │                         ,?, And!. They are fully explained in the Binary │                         │ Operators section of the Language Reference. │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Negation │ The only unary operator that Nota defines is the │                         │ value negation - operator. Eg: - 618033988749895   sin [x]. │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Parenthesis │ Nota provides the parenthesis notation to reorder │                         │ precedence like: (1   2) * 3. │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Parenthesis │ Functions in Nota are written not with │                         │ parenthesis but with brackets (Sin [x], Log [2,     │                        │ 100], ...). │                         │ │                         │ Just like identifiers they are case insensitive │                         │ so it doesn't matter how you write them: log [x]=│                         OG LOG [x]=lOG [x] │                         │ │                         │ For the sake of beauty, some of the functions are │                         │ rendered specially (explained in the Notational │                         │ Functions section). Also in the reference you can │                         │ find a full explanation of the functions. │       ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼──────────────────────────────────────── ───────────┤       Name Assignment │ You can assign names to calculations for further │                         │ use. These names are constants and you have to │                         │ use the assignment grammar to register them. Name │                         │=Value. So something like: Earth's Volume=3/4 │                         │ * pi * Earth's Radius ^ 3. │                         └───────────────────────────────────────────────── ──┘                     ┌────────┐                  │ help │───┐                  └────────┘ │                               │      ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ │ ┌───────────────────────────────────── ─────┐        Control Commands └── ▶ │ Shows you the link to the documentations │      └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ └────────────────────────────────────── ────┘                                ┌─────────────────────────────┐                          │ ▶ │ Exists from the application │            ┌────────┐ │ └─────────────────────────────┘            │ exit │────┘ ┌──────────────────────────────┐            │ ┌───── ▶ │ Clears the calculator screen │                                 │ └──────────────────────────────┘                                 │                 ┌─────────┐ │                 │ clear │─────┘                 └─────────┘                       ┌─────────────────────────────┐                    │ Binary Operators │        ┌ ─ ─ ─ ─ ─ ┼────────────────┬────────────┴────────┐                    │ │ │        │ 1   2 │ In [1]: 1   2 │ Summation │                    │ │ │        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ │ │        │ 1 - 2 │ In [2]: 1 - 2 t Subtraction │                    │ │ │        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ │ │        │ 1 * 2 │ In [3]: 1 x 2 │ Multiplication │                    │ │ │        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ 1 │ │        │ 1/2 │ In [4]: │ │ Division │                    │ 2 │ │        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ 2 │ │        │ 1 ^ 2 │ In [5]: 1 │ Power │                    │ │ │        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ │ │        │ 1% 2 │ In [6]: 1% 2 ul Modulo │                    │ │ │        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ │ │ │ Returns 1 if        ? 1? 2 │ In [7]: 1=2 │ Equals │ ● equals and 0                    │ │ │ │ otherwise        ├ ─ ─ ─ ─ ─ ┼────────────────┼─────────────────────┤                    │ │ │ │ Returns if not        │ 1! 2 │ In [8]: 1 ≠ 2 als Equals │ ● als equals and 0                    │ │ │ │ otherwise        └ ─ ─ ─ ─ ─ ┴────────────────┴─────────────────────┘              ▲ ▲ ▲              │ │ │     ┌────────┘ │ ┌─────┘     │ └───────┐ │     └── What to write │ │                                     └── └── What it does                                     │                    How it'll look ──┘                                                       ┌───────────────────────┐                                                    │ Notational Functions │      ┌──────────────────┬────────────────┬─────────┴─── ───┬────────────────┤      │ sqrt [1/2] │ abs [7] │ floor [1/2] │ ceil [1/2] │      ├──────────────────┼────────────────┼───────────── ───┼────────────────┤      ____ _____ │ │ │ │      │ ╱ 1 │ ⎢ 1 ⎥ │ ⎜ 1 ⎟ │ ⎡ 1 ⎤ │      │ In [1]: ╱ ─── │ In [2]: ⎢ ─── ⎥ │ In [3]: ⎜ ─── ⎟ In [4]: ⎢ ─── ⎟ │      ╲╱ ╲╱ 2 │ ⎢ 2 ⎥ │ ⎣ 2 ⎦ │ ⎢ 2 ⎥ │      │ │ │ │ │      └──────────────────┼────────────────┼───────────── ───┼────────────────┤                         │ │ │ │             Square Root ● Absolute ● Floor ● Ceiling ●                                                              •                                                In [1]: 5 • 8                                                          •                                                        ┌─────┬─────┐                                               Out [1]: │ 5.0 │ 8.0 │                                                       └─────┴─────┘        ┌──────────────────────────────────┐ In [2]:       │ Out [] function makes it possible │      │ to access the history of your │ Out [2]: 12 .0      Ulations calculations. To get output no. │      │ "x", you can can simply use: │      │ out [x] and access it │ ┌ ┐ ┌ ┐      └────────────────┬─────────────────┼─── ▶ In [3]: Out │ 1 │   Out │ 2 │                       │ The Special │ └ ┘ └ ┘                       │ Out [] Function │                       └─────────────────┘ Out [3]:  .0                                                                ────┐                      ● │                      │ │                      │ │            Log [x] ──┼── Logarithm of x of base e │                      │ │         Log [b, x] ──┼── Logarithm of x of base b │                      │ │            Sin [x] ──┼── Sine of x │                      │ │            Cos [x] ──┼── Cosine of x │                      │ │            Tan [x] ──┼── Tangent of x │                      │ │            Cot [x] ──┼── Cotangent of x │                      │ │            Sec [x] ──┼── Secant of x │                      │ │            Csc [x] ──┼── Cosecant of x │                      │ │           Asin [x] ──┼── Area Sine of x │                      │ │           Acos [x] ──┼── Area Cosine of x │                      │ │           Atan [x] ──┼── Area Tangent of x │                      │ │           Sinh [x] ──┼── Hyperbolic Sine of x │                      │ │           Cosh [x] ──┼── Hyperbolic Cosine of x ├──── Functions                      │ │           Tanh [x] ──┼── Hyperbolic Tangent of x │                      │ │           Coth [x] ──┼── Hyperbolic Cotangent of x │                      │ │           Sech [x] ──┼── Hyperbolic Secant of x │                      │ │           Csch [x] ──┼── Hyperbolic Cosecant of x │                      │ │          Asinh [x] ──┼── Hyperbolic Area Sine of x │                      │ │          Acosh [x] ──┼── Hyperbolic Area Cosine of x │                      │ │          Atanh [x] ──┼── Hyperbolic Area Tangent of x │                      │ │    Max [a, ..., b] ──┼── Maximum of the argument │                      │ │    Min [a, ..., b] ──┼── Minimum of the argument │                      │ │    Sum [a, ..., b] ──┼── Arguments sum │                      │ │            Exp [x] ──┼── Natural exponent to the power of x │                      │ │                      │ │                      ● │                                                            ────┘                                              ┌────────────────────────────────┐           Verify that Identifiers with Reserved are available.                                    ___ │ Notation │             1   ╲╱ 5 ├─────────────────────────┬──────┘               In [1]: ⟨φ⟩ ≡ ─────────── │ For a more beautiful │           │ 2 │ rendering, Nota │                                           Some reserves some │           │ Out [1]: 1. 1666666666666665 │ identifiers to be used │                                           │ for rendering famous │           │ │ characters out of a │               In [2]: φ │ normal keyboard. Expect │           │ │ for the Pi, every other │              Out [2]: 1. 1666666666666665 │ identifier is available │           │ │ to be declared │            ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─│ │                                           ├─────────────────────────┘                                           │                                           │                                           │                                           ▼                  Alpha │ Alpha │ Beta '│ Beta │ Chi' │ Chi │ Delta '│ Delta │ E            ● ───────┼───────┼───────┼──────┼──────┼─────┼───── ───┼───────┼────            │ Α │ α │ Β │ β │ Χ χ │ Δ │ δ │ e            │            │            │ Epsilon │ Epsilon │ Eta │ Eta │ Gamma │ Gamma │ Iota │ Iota            │ ─────────┼─────────┼──────┼─────┼────────┼─────── ┼───────┼───────            │ Ε │ ε │ Η │ η │ Γ │ γ │ Ι │ ι            │            │            │ Kappa '│ Kappa │ Lambda' │ Lambda │ Mu '│ Mu │ Nu' │ Nu │ Omega '            │ ───────┼───────┼─────────┼────────┼─────┼────┼─── ──┼────┼─────────            │ Κ │ κ │ Λ │ λ │ Μ │ μ │ Ν │ ν │ Ω    Mapping │            │            │ Omega │ Omicron '│ Omicron │ Phi' │ Phi │ Pi '│ Pi │ Psi' │ Psi            │ ──────┼──────────┼─────────┼──────┼─────┼─────┼── ──┼──────┼──────            │ ω ​​│ Ο │ ο │ Φ │ φ │ Π │ π │ Ψ │ ψ            │            │            │ Rho │ Rho │ Sigma │ Sigma │ Tau '│ Tau │ Theta' │ Theta            │ ─────┼─────┼────────┼───────┼──────┼─────┼─────── ─┼────────            │ Ρ │ ρ │ Σ │ σ │ Τ │ τ │ Θ │ θ            │            │            │ Upsilon '│ Upsilon │ Xi' │ Xi │ Zeta '│ Zeta            ● ─────────┼─────────┼─────┼────┼───────┼───────                Υ │ υ │ Ξ │ ξ │ Ζ │ ζ      ────────────────────────────────────────────────── ──────────────────────────────              Copyright 6371 - present by Pouya Kary. All Rights Reserved.
[a, ..., b]**************** [a, ..., b] ******************  (Read More) ******************** **************************Brave Browser

About admin

Leave a Reply

Your email address will not be published. Required fields are marked *