in ,

Upgrading Photosynthesis, Hacker News

      

bib ]

  • (********************************************************************************************************************************
  • (**********************************************************************************************************************************
  • bib ] ********************************************************************************************************************************** (************************************************************************************************************************************** (******************************************************************************************************************************************background                                                         (************************************************************************************************************************** We need food and air to live. Photosynthesis provides both. (************************************************************************************************************************************** Farms provide food; forests provide clean air. But, forests and farms are in accelerating competition for land – together they make up a 61% (and growing) share of Earth’s total land area. The rest is desert, tundras and glaciers – not friendly places. (************************************************************************************************************************************** On balance, forests have been losing out to more farms. These land use changes account for 1/3 of human emissions. Despite the move from forests to farms, we’re still on pace to underserve demand in rice & wheat by (% within) years. (************************************************************************************************************************************** Photosynthesis may be life’s engine, but that engine only operates at 0.1-2% efficiency. All life on earth – animals, humans, plants, microbes etc – is hindered as a result. To make food abundant and control CO2 levels, 16 % efficiencies are required. That is our goal. (****************************************************************************************************************************************** (Table of Contents) *********************************************************************************************************************************************** We begin with a history of food & CO2 on Earth in four charts. Food is created by taking CO2, keeping the C and releasing the O2. So, naturally, their stories are deeply entwined. (************************************************************************************************************************************** We then outline how we plan to achieve 11% efficiencies by co-evolving photosynthetic genetics and growing environment. (****************************************************************************************************************************************** (********************************************************************************************************************************************** () ************************************************************************************************************************************ Food [ bib ] ****************************************************************************************************************************************** (************************************************************************************************************************************** Over the last years, the average person has become 40 x more wealthy. Despite a 109 x increase in the number of people, the price of wheat has fallen by 5x. However, the price has stopped dropping over the last twenty years. (****************************************************************************************************************************************** (************************************************************************************************************************************** Food production is number of acres times production per acre. (************************************************************************************************************************************** We might think to double our allocation of land used for agriculture. We can’t. (************************************************************************************************************************************** That leaves increasing production per acre. While real yields have continued a slow 0.3% increase year over year. However, max potential yields per acre have stagnated since (*********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. Since we can’t add land, we must increase output per acre. (****************************************************************************************************************************************** The problem is not input energy. Even a single photon has enormous energy relative to biological requirements. A photon of red light – a low energy wavelength – carries 3 ATPs worth of energy. (************************************************************************************************************************************** x more solar energy hits a bacterial cell than the bacterial cell requires to live. (****************************************************************************************************************************************** () **************************************************************************************************************************************** (Air) ********************************************************************************************************************************************** (************************************************************************************************************************************** It’s unclear what the optimal level of CO2 on Earth is.  
    In the last two hundred years, global co2 has grown at an all-time fast rate due to human emissions. The projections are not bright. (************************************************************************************************************************************** Agriculture emerged ~ 12, (years ago – we believe an increase of global CO2 from [ bib ] ****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** (ppm to) ************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************ ppm was required to make farming feasible. (************************************************************************************************************************************** So, optimal CO2 levels are not 0 ppm. (****************************************************************************************************************************************** (************************************************************************************************************************************ Earth CO2 levels have varied enormously. Improvements in photosynthesis can dramatically change CO2 levels and CO2 levels are a principal evolutionary driver for photosynthetic organisms. (**************************************************************************************************************************

  • (**************************************************************************************************************************************** (Around) ************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** million years ago, CO2 levels plummetted from (*****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, ppm to , 12 ppm very quickly. While no causal link has been demonstrated, this reduction coincides with the evolution of carbon dioxide storage in photosynthetic bacteria.                                

  • Imagebib ] million years ago, CO2 levels started to fall significantly. As a result, a new, more efficient photosynthesis (C4) pathway evolved to handle low CO2.                                 
  • Image(**************************************************************************************************************************************** Many plants are not optimized for these higher CO2 levels reducing their capacity to remove CO2 levels and grow quickly.                                 
  • (******************************************************************************************************************************************                          (******************************************************************************************************************************************     Image
    Why bother with environmental control and especially environmental optimization when the goal is accelerating photosynthesis genomically? (************************************************************************************************************************************** Environments and genomes are inextricably linked. Environments are a primary selection mechanism for genomes and can change the genome itself. Genomes are tailored to environments and small changes in photosynthetic genomics change the environment. (************************************************************************************************************************************** Determining optimal environmental conditions for a given genotype leads to better understanding of the phenotype. For instance, a 59 bp change in a cyanobacterial strain led to a 3x increase in photosynthetic efficiency only under 1000 mmol / m ^ 2 / s of light. By probing light levels, the improvement was traced back to the electron transport chain.

    The physiology of a plant is changing every second. It’s optimal light cycle is 12 microseconds on / miliseconds off. Instead, we learn a neural net that inputs info about the plant and determine the appropriate environment.background

      So, genomes and environments should be co-optimized. In alternating cadence, the genome is optimized to suit the environment and the environment is optimized to suit the genome. (************************************************************************************************************************************ Photosynthesis BackgroundPhotosynthesis as currently constructed is very wasteful. It operates at 0.1-2% efficiency. (************************************************************************************************************************************** Parts of photosynthesis are remarkably efficient. The solar cell has (***************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************% efficiency in converting light energy into electrical energy. Unfortunately, converting electrical energy into carbohydrate energy is very inefficient. (************************************************************************************************************************************** Photosynthesis can be decomposed into 5 major subparts. Capturing photons, converting photons into electrons, transporting electrons, converting electrons into energy, and creating sugars.                          (**************************************************************************************************************************

  • [61] Photosynthesis takes place within cells on plants’ leaves.                                 
  •                                  (****************************************************************************************************************************************************************** [ bib ]Throughout the day, photons hit the plants leaves.                                 
  •                                  (******************************************************************************************************************************************************************
    Within these halls of antennae, incident photons generate electrons via the photoelectric effect.                                 

  •                                  (********************************************************************************************************************************************************************

    Generated electrons are then immediately drawn into a biological wire (literally proteins with attached conductive metals).                                 

  •                                  (********************************************************************************************************************************************************************These electrons provide the energy required to create life’s intermediate energy forms (ATP & NADPH).                                 
  •                                 Image

    CO2 is breathed in and harvested energy is used to chain long carbon chains of sugars for use by the plant.                                 

  • (******************************************************************************************************************************************                          (****************************************************************************************************************************************** (************************************************************************************************************************************** The overall process has 0.5-2% efficiency. Some transitions are remarkably efficient ((**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************% quantum yield of photons to electrons); while others (Rubisco turnover rate) are not. In any chain process, addressing the current limiting factor yields a new one. In our repairman’s tour of photosynthesis, we’ll detail potential fixes; refactor for each transition as well as consider possibilities of cutting entire steps. (************************************************************************************************************************************** Below is a “sales” funnel of energy. At each step, some amount of energy is lost. Overall, we start with Joules and end up with Joules!
    (**************************************************************************************************************************************** Photosynthetic Energy Conversion Funnel (Joules at each step indicated on right).

    (************************************************************************************************************************************** The current approach to improving plants requires too much watching grass grow. Phenotyping the results of a genomic change requires waiting until the plant is fully grown and most measurements are currently done by hand and written down on paper. (************************************************************************************************************************************** We are building a pipeline from FASTA files of genomes to deployment in our customer’s facilities. Every step is automated to create a high throughput of candidates. Every step is expressed in software so that machine learning algorithms can filter candidates for the next change. (************************************************************************************************************************************** Real-world data and experiments is required. However, the more build-test-iterate cycles that can be executed in tissue culture (plant cells) vs full-grown plants the faster improvements will be made. (**************************************************************************************************************************

  • (**************************************************************************************************************************************background
    There are three main stages. Plant genomes, plant cells and full-grown plants. Plant genomes are added to plant cells which are then grown into full plants via tissue culture. (******************************************************************************************************************************************                             

  •                              (************************************************************************************************************************** (****************************************************************************************************************************************************************************** [ bib ] (****************************************************************************************************************************************** Entirely in software, hundreds of thousands of candidate genetic edits are generated. Machine learning algorithms then accept (green) or reject these candidates. Accepted genes are then expressed in cells (green arrow). (******************************************************************************************************************************************                             
  • (************************************************************************************************************************** (******************************************************************************************************************************************************************************** [61] [ bib ] The build-test-iterate pipeline has historically been futile in plants since the cycle requires 3 months to wait for the plant to grow. Instead, we incorporate detailed photosynthetic efficiency measurements at the tissue culture stage. (******************************************************************************************************************************************                             
  • (************************************************************************************************************************** (******************************************************************************************************************************************************************************** [ bib ] (**************************************************************************************************************************************** Convolutional neural nets then evaluate the photosynthetic efficiency of every cell in every plant in order to accept or reject candidates for deployment in full-scale production. (************************************************************************************************************************************** Rejects again provide the data for training models at the tissue culture and gene candidate stage so that hopefully more can be evaluated and rejected on the day timeframes of tissue culture vs months timeframes of full plants. (******************************************************************************************************************************************                              (**************************************************************************************************************************** (**************************************************************************************************************************************
    Overall, at every stage candidates are evaluated by machine learning models and either progressed (green) or rejected (red). Every reject yields data (blue) with which to train the prior step. By automating, the flywheel moves more quickly; by training accurate models, the flywheel becomes more efficient. (******************************************************************************************************************************************                             

  • (******************************************************************************************************************************************                      (****************************************************************************************************************************************** (******************************************************************************************************************************************** Proposed Genomic Candidates (************************************************************************************************************************************** Below we list a few more targeted avenues of genomic improvements. For each improvement, we share the potential gain, the cause of inefficiency and which part of the funnel is being addressed. (**************************************************************************************************************************
    (************************************************************************************************************************************************************************************ (Improvement) (Cause of Efficiency Loss) (Component) ************************************************************************************************************************************************************************************* (Potential Gain) (Notes) ************************************************************************************************************************************************************************************ (**************************************************************************************************************************************************************************************

    (Converting Photons to Electrons) (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************ (%) Too much light=>too many free electrons. Plants respond by quenching new photon energy as heat. Restarting photosynthesis to changed environmental conditions is slow. Recently, 22% photosynthesis acceleration by down regulating slow-response proteins. With LED light control, entire regulatory network can be removed. (************************************************************************************************************************************************************************************ (Add Carbon Concentration Mechanism) **************************************************************************************************************************************************************************************** (Rubisco’s Specificity for CO2 vs O2(Chaining Carbons) ******************************************************************************************************************************************************************************************* (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************ (%) Cyanobacteria and C4 plants disentangle CO2 storage and consumption. CO2 kept at – ppm near Rubisco to prevent respiratory reactions. Substantial improvement: C4 plants make 4% of plant species but 37% of biomass. Higher CO2=>choose fast catalyzing / low selectivity Rubisco=>increase turnover rate to CO2 / second. (************************************************************************************************************************************************************************************Intra-leaf CO2 Conductance (**************************************************************************************************************************************************************************************** (Rubisco’s Specificity for CO2 vs O2(Chaining Carbons) ******************************************************************************************************************************************************************************************* (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** (%) CO2 levels are 3x lower at Rubisco site=>requires slow but highly selective Rubisco. (************************************************************************************************************************************************************************************

    Express Rubisco in only Nuclear DNA (************************************************************************************************************************************************************************************ Slow Evolutionary Progress in Rubisco [ bib ]. ************************************************************************************************************************************************************************************ [ bib ] ****************************************************************************************************************************************************************************** [ bib ] ******************************************************************************************************************************************************************************** Currenly 1/2 protein synthesized fro m chloroplast DNA; 1/2 protein synthesized from nuclear DNA. Single point mutations disable functionality impairing incremental progress. Make CRISPR-based edits simpler to execute. Cyanobacteria and C4 plants disentangle CO2 storage and consumption. CO2 kept at – ppm near Rubisco to prevent respiratory reactions. Substantial improvement: C4 plants make 4% of plant species but 37% of biomass. Higher CO2=>choose fast catalyzing / low selectivity Rubisco=>increase turnover rate to CO2 / second. (************************************************************************************************************************************************************************************Move Rubisco Synthesis to Nucleus (**************************************************************************************************************************************************************************************** Scientific Process [5] ********************************************************************************************************************************************************************************** (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************ (%) Selectively knock out regulatory networks that regulate photosynthesis inhibition due to excessive light. (**************************************************************************************************************************************************************************************** Too much light=>too many free electrons. Plants respond by quenching new photon energy as heat. Restarting photosynthesis to changed environmental conditions is slow. Recently, 22% photosynthesis acceleration by down regulating slow-response proteins. With LED light control, entire regulatory network can be removed. (************************************************************************************************************************************************************************************ (TODO) (TODO) ****************************************************************************************************************************************************************************************** (TODO) ****************************************************************************************************************************************************************************************** (TODO) ****************************************************************************************************************************************************************************************** (TODO) ****************************************************************************************************************************************************************************************** (****************************************************************************************************************************************************************************************** [ bib ] ********************************************************************************************************************************************************************

      (****************************************************************************************************************************************** (********************************************************************************************************************************************************************************************

      Photosynthetic Wind Tunnel (**************************************************************************************************************************************************************

      To accelerate a process, one must first measure it wellandquickly. For example, a wind tunnel creates a variety of wind conditions and measures aerodynamic efficiency against them at a far lower cost than iteratively crashing planes. Similarly, our photosynthetic wind tunnels evaluate photosynthetic efficiency against every possible climate on earth as well as determine the optimal environmental dynamics for a particular genotype. (****************************************************************************************************************************************** Measuring photosynthesis (************************************************************************************************************************************** Plants rely on photons to drive their chemistry. So, it’s not entirely surprising that photon-counting cameras can determine a fair amount re: plants. We have many mechanisms for measuring photosynthetic efficiency. (************************************************************************************************************************************** Our current optics enable um resolution measurements – enough to recognize the photosynthetic efficiency of individual cells in every plant. Transferring control logic to software reduced the cost from k $ to 2.5k $. Mounting these sensors onto a robot means we can now measure the photosynthetic efficiency of every cell in every plant every few minutes. (**************************************************************************************************************************************************************************************** (Chlorophyll Fluorescence) ****************************************************************************************************************************************************************************************************   We count fluorescent photons emitted by chlorophyll. When photons hit a plant’s chloroplast, some number of electrons are excited. Some percentage of said electrons are harvested, but others drop an energy level and emit photons at 753 nm. By precisely probing the plant with varying LED light levels and counting the fluoresced photons, one can determine photosynthetic efficiency.

      () In particular, when photons (yellow p) hit a plant’s leaf some number of electrons (e) are generated. Many of those electrons are eventually used to power sugar synthesis. Others are fluoresced in red spectrum (red p). Our photon counting cameras then count these photons. (****************************************************************************************************************************************** (****************************************************************************************************************************************************************************************************** Segmentation Neural Networks (************************************************************************************************************************************** Segmentation neural nets measure photosynthetic leaf area every few hours. These provide a longer term signal of plant growth. (****************************************************************************************************************************************** (Measuring Stomata) **************************************************************************************************************************************************************************************************** Stomata are plant mouths. It’s how they breathe. In the photos below, they are open. Plants vary how wide they open their mouths depending on how much CO2 their carbon cycle is currently capable of chaining. As such, stomatal dynamics are an excellent view into a plant’s real-time cellular photosynthetic state.

      backgroundMeasuring width of open stomata. (************************************************************************************************************************************************************** (Environmental Optimization) *************************************************************************************************************************************************** Reinforcement learning is a challenging technique to apply and often not appropriate for many problems it’s suggested for. However, the paradigm of sensed environment, controlled actions and optimizes rewards is a natural factoring for dynamics problems. (************************************************************************************************************************************** Environment control is associated with indoor growing however almost every form of human overseen plant growth involves environmental control. In field agriculture, farmers control water, fertilizer, hormones, microbiomes, planting timing and even weather through cloud seeding. Even in carbon sequestration forests, governments have large areas of different weather, ecologies and environments to select from in siting these forests. (****************************************************************************************************************************************** (Reward) ************************************************************************************************************************************************

      Our game score is plant growth speed. Our score is a fusion of real-time photosynthetic efficiency and daily added biomass. (**************************************************************************************************************************

      bib ] (**************************************************************************************************************************************** (State Space) The state of the plant & its environment is our environment includes all of the above environmental information and adds detailed celllular-level plant physiology information. As mentioned above, we capture real-time photosynthetic efficiency photos of with um resolution. At a similar resolution, thermal cameras determine whether plants’ pores are open – when open, the leaf’s surface is being evaporative cooled. Periodically, we capture 3d spectral images – since plants respond physiologically to most visible light, near & far infrared is very useful to receiving clearer signals of plant structure & water retention. (**************************************************************************************************************************

    • Image(**************************************************************************************************************************************** State Space (microns ->millimeters)                           
    •                           Image
      State Space (microns ->millimeters)                           

    •                           Image(*************************************************************************************************************************************** State Space (microns ->millimeters)                            (****************************************************************************************************************************Image() State Space (microns ->millimeters)                           
    • (******************************************************************************************************************************************                    (******************************************************************************************************************************************Image(Action Space)
      (********************************************************************************************************************************************** Bank of PLCs for environmental control & control. NVIDIA Jetson JTX2 for inference.bib ] ************************************************************************************************************************************** [ bib ] **************************************************************************************************************************** Our goal with the action space is to control every environmental variable relevant to plant growth. (**************************************************************************************************************************

    • backgroundWatering sounds simple. However, there are many combinations of variables to control: pH, quantities, schedule, root application or leaf application, size of rain droplets, etc …                           
    • (****************************************************************************************************************************************************************************************************************** [ bib ] Light can be broken down to: for every wavelength, how many photons per m ^ 2 per second at what times of day? Its effect is very complicated though. While red and blue light are the dominant source of energy, all spectra contribute to plant regulatory control.                           
    • (******************************************************************************************************************************************************************************************************************** [61] Plant consume nutrients as ions. TODO list of nutrient ions.                           
    • (******************************************************************************************************************************************************************************************************************** [ bib ]Air                           
    • (********************************************************************************************************************************************************************************************************************
      Hormones                           

    • (**********************************************************************************************************************************************************************************************************************

      Microbes                           

    • (******************************************************************************************************************************************                    (****************************************************************************************************************************************** (********************************************************************************************************************************************************************************************************************** Solar energy is extraordinarily abundant – our entire species’ power usage is x lower than incident solar energy. All energy to drive living systems is based off that energy – the vast majority harvested via photosynthesis. All aerobic life (humans, microbes etc …) lives of photosynthesis’ work in converting water and carbon dioxide in oxygen and food. Increasing photosynthetic efficient from 0.2-2% to 10% improves the engine on the left so that all of the animals on the right can benefit. (****************************************************************************************************************************************** On the left, a photo of plant cells photosynthesiizing. On the right, a video of the Earth photosynthesizing. It can be hard to visualize how small changes in the genomes of the cells on the right can have any bearing on the health of the planet’s atmosphere or its residents. However, abundance and clean air can achieve by accelerating that molecular engine. (******************************************************************************************************************************************Image Photosynthesis Background
      (**************************************************************************************************************************************** (************************************************************************************************************************************************ (Photon Capture) Each leaf contains halls of light-harvesting antennae (red / blue discs). When a photon (yellow triangle) hits these antennae, an electron is generated. These electrons are then gathered towards a reaction center (green mesh). (******************************************************************************************************************************************

      (****************************************************************************************************************************************ImagePhotons are created via fusion in the sun and propelled against the Earth’s surface. Within a plant’s leaf, a hall of light-harvesting 1 nm (2) antennae greet those photons. Each antenna is excited via the photoelectric effect within a narrow band of wavelengths – resulting excitons “hop” into a central reaction center via a quantum walk. Since blue light has higher energy, antennae that select for blues are further from the reaction center (RC). Every exciton enters the reaction center with roughly the energy of 1 red photon. 51 – antennae feed each reaction center. (************************************************************************************************************************************************************** (Converting Photons into Free Electrons) This first reaction center concentrates electrical energy to split water to create electrons, protons and oxygen. We breathe the oxygen. The electrons and protons supply downstream energy.

      (**************************************************************************************************************************************** Photosystem II concentrates energy from said excitons to shard water into a proton, an electron and o2. The O2 is released for us to breathe. The proton creates a proton gradient for downstream ATP energy synthesis. Process is very remarkable – only biological process to oxidize water and generates the largest potential difference found in nature at 1.2V-1.8V. Due to amount of intensity of solar & electrical stress, the core protein (D1) must be replaced every 21 min. (************************************************************************************************************************************************************** (******************************************************************************************************************************************** (Transporting Electrons) Disorganized free electrons would tear apart cellular infrastructure and greatly increase entropy. Instead, electrons are immediately transported down a nm biological wire to a second reaction center .

      (**************************************************************************************************************************************** [ bib ] ************************************************************************************************************************************** Electron transport chain . In low light, when fewer electrons are being transported the wire shortens to 22 nm. In high light, the wire extends to (nm.) **************************************************************************************************************************************************************************** (******************************************************************************************************************************** Converting Electrons into Energy (************************************************************************************************************************************** The second reaction center re-energizes electrons after their journey down the biological wire. These excited electrons then create energy intermediates.

      (**************************************************************************************************************************************** The second reaction center (Photosystem I) also concentrates energy from 52 – light-harvesting antennae to form a 0.5V potential difference. That energy then re-energizes the electrons flowing out of the electron transport chain which in turn oxidize NADP to create NADPH – an energy intermediate for the carbon cycle. (************************************************************************************************************************************************************** (Converting Energy Carbon Dioxide into Carbohydrates)

      The core enzyme of photosynthesis, Rubisco, then consumes the energy generated & co2 in order to chain carbons into sugars. Its ‘crucial functionality but also its’ slow work-rate (3-5 co2 per second vs>107 per second) make it Earth’s most abundant enzyme. (****************************************************************************************************************************************** (******************************************************************************************************************************************************************************************************************************** (********************************************************************************************************************************************************************************** [1] Ute Armbruster, L Ruby Carrillo, Kees Venema, Lazar Pavlovic, Elisabeth Schmidtmann, Ari Kornfeld, Peter Jahns, Joseph A Berry, David M Kramer, and Martin C Jonikas. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. (Nature communications) **********************************************************************************************************************************************************************************************************************************, 5: (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . [ bib ] (************************************************************************************************************************************************************************************[2] Ute Armbruster, Lauriebeth Leonelli, Viviana Correa Galvis, Deserah Strand, Erica H Quinn, Martin C Jonikas, and Krishna K Niyogi. Regulation and levels of the thylakoid k / h antiporter kea3 shape the dynamic response of photosynthesis in fluctuating light. Plant and Cell Physiology , (7): – 1637, 2017. [ bib ] (************************************************************************************************************************************************************************************[3] Nicky Atkinson, Doreen Feike, Luke Mackinder, Moritz T Meyer, Howard Griffiths, Martin C Jonikas, Alison M Smith, and Alistair J McCormick. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. (Plant biotechnology journal) ************************************************************************************************************************************************************************************************************************************, (5): – (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 2018. [ bib ] (************************************************************************************************************************************************************************************[4] Nicky Atkinson, Nuno Leitão, Douglas J Orr, Moritz T Meyer, Elizabete Carmo-Silva, Howard Griffiths, Alison M Smith, and Alistair J McCormick. Rubisco small subunits from the unicellular green alga chlamydomonas complement rubisco-deficient mutants of arabidopsis. (New Phytologist) , (2): [ bib ] – (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 2018. [ bib ] (************************************************************************************************************************************************************************************[5] Graeme Bainbridge, Pippa Madgwick, Saroj Parmar, Rowan Mitchell, Matthew Paul, Jim Pitts, Alfred J Keys, and Martin AJ Parry. Engineering rubisco to change its catalytic properties. (Journal of Experimental Botany) **********************************************************************************************************************************************************************************************************************************, pages 1302 – (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 1998. [ bib ] (************************************************************************************************************************************************************************************[6] J Barber. What limits the efficiency of photosynthesis, and can there be beneficial improvement? 2001. [ bib ] (************************************************************************************************************************************************************************************[ bib ] Robert E Blankenship, David M Tiede, James Barber, Gary W Brudvig, Graham Fleming, Maria Ghirardi, MR Gunner, Wolfgang Junge, David M Kramer, Anastasios Melis, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. (science [ bib ] , 350 (9493: – (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, **************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [ bib ] (************************************************************************************************************************************************************************************[ bib ] John D Bullough. Spectral sensitivity for extrafoveal discomfort glare. (Journal of Modern Optics) , 15: – 1557, 2010. [ bib ] (************************************************************************************************************************************************************************************[ bib ] Jennifer A Burney, Steven J Davis, and David B Lobell. Greenhouse gas mitigation by agricultural intensification.ImageProceedings of the national Academy of Sciences, 117 (27): – , 2012. [ bib ] (************************************************************************************************************************************************************************************[ bib ] Min Chen and Robert E Blankenship. Expanding the solar spectrum used by photosynthesis. Trends in plant science, (8): – (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . [ bib ] (************************************************************************************************************************************************************************************[ bib ] Roberta Croce and Herbert Van Amerongen. Natural strategies for photosynthetic light harvesting. Nature chemical biology **********************************************************************************************************************************************************************************************************************************, (7): (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [ bib ] (************************************************************************************************************************************************************************************[ bib ] Bert G Drake, Miquel A Gonzàlez-Meler, and Steve P Long. More efficient plants: a consequence of rising atmospheric co2? (annual review of plant biology) ************************************************************************************************************************************************************************************************************************************, 48 (1): – (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . [ bib ] (************************************************************************************************************************************************************************************[ bib ] James Ehleringer and Olle Björkman. Quantum yields for co2 uptake in c3 and c4 plants: dependence on temperature, co2, and o2 concentration. v Plant Physiology ************************************************************************************************************************************************************************************************************************************, (1): – (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 1982. [ bib ] (************************************************************************************************************************************************************************************[ bib ] James Ehleringer and Robert W Pearcy. Variation in quantum yield for co2 uptake among c3 and c4 plants. Plant Physiology , (3): – 571, 1988. [ bib ] (************************************************************************************************************************************************************************************[ bib ] Francesca Fassioli, Rayomond Dinshaw, Paul C Arpin, and Gregory D Scholes. Photosynthetic light harvesting: excitons and coherence. (Journal of The Royal Society Interface) ************************************************************************************************************************************************************************************************************************************, (100: (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [ bib ] (************************************************************************************************************************************************************************************[ bib ] Jaume Flexas, Ülo Niinemets, Alexander Gallé, Margaret M Barbour, Mauro Centritto, Antonio Diaz-Espejo, Cyril Douthe, Jeroni Galmés, Miquel Ribas-Carbo, Pedro L Rodriguez, et al. Diffusional conductances to co2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis research, (1-3): – (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, **********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [ bib ] (************************************************************************************************************************************************************************************Padraic J Flood, Jeremy Harbinson, and Mark GM Aarts. Natural genetic variation in plant photosynthesis. Trends in plant science, (6): – (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 2016. [ bib ] (************************************************************************************************************************************************************************************ Christine H Foyer, Jenny Neukermans, Guillaume Queval, Graham Noctor, and Jeremy Harbinson. Photosynthetic control of electron transport and the regulation of gene expression. (Journal of experimental botany) , (4): – 1779, 2013. [ bib ] (************************************************************************************************************************************************************************************ Richard E Glick and Anastasios Melis. Minimum photosynthetic unit size in system i and system ii of barley chloroplasts. Biochimica et Biophysica Acta (BBA) -Bioenergetics [6] ************************************************************************************************************************************************************************************************************************, (1): 155 – (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 1988. (************************************** (************************************************************************************************************************************************************************************ Maureen R Hanson, Myat T Lin, A Elizabete Carmo-Silva, and Martin AJ Parry. Towards engineering carboxysomes into c3 plants. (The Plant Journal) ************************************************************************************************************************************************************************************************************************************, (1): – , (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (**************************************** (************************************************************************************************************************************************************************************ Jeremy Harbinson, Aina E Prinzenberg, Willem Kruijer, and Mark GM Aarts. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. (Current opinion in biotechnology) , (2): – **********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [ bib ] (************************************************************************************************************************************************************************************ Jeremy Harbinson, Uulke van Meeteren, and Rene van Rensen. The use of imaging of the efficiency of photosystem ii electron transport to visualize the effect of dry storage on the photosynthesis and stomatal closure of cut rose stems. In VIII International Symposium on Postharvest Physiology of Ornamental Plants (******************************************************************************************************************************************************************************************************************************, pages – 66, 2007. (******************************************** (************************************************************************************************************************************************************************************ Elizabeth P Harrison, Hulya Olcer, Julie C Lloyd, Stephen P Long, and Christine A Raines. Small decreases in sbpase cause a linear decline in the apparent rubp regeneration rate, but do not affect rubisco carboxylation capacity. (Journal of Experimental Botany) , (416: – (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (********************************************** (************************************************************************************************************************************************************************************ Sander W Hogewoning, Emilie Wientjes, Peter Douwstra, Govert Trouwborst, Wim Van Ieperen, Roberta Croce, and Jeremy Harbinson. Photosynthetic quantum yield dynamics: from photosystems to leaves. (The plant cell) *************************************************************************************************************************************************************************************************************************************, (5): – 1935, 2018. (********************************************** (************************************************************************************************************************************************************************************[ bib ] Elias Kaiser, Alejandro Morales, and Jeremy Harbinson. Fluctuating light takes crop photosynthesis on a rollercoaster ride. (Plant physiology) , (2): – ********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, ****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [25] (************************************************************************************************************************************************************************************[ bib ] Elias Kaiser, Alejandro Morales, Jeremy Harbinson, Johannes Kromdijk, Ep Heuvelink, and Leo FM Marcelis. Dynamic photosynthesis in different environmental conditions. (Journal of experimental botany) , (9): 2678 – (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [26] (************************************************************************************************************************************************************************************[ bib ] Ralf Kaldenhoff. Mechanisms underlying co2 diffusion in leaves. (Current opinion in plant biology) **************************************************************************************************************************************************************************************************************************************, (3): – (*****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . [27] (************************************************************************************************************************************************************************************[ bib ] Joel H Kaplan and Andre T Jagendorf. Further studies on chloroplast adenosine triphosphatase activation by acid-base transition. Journal of Biological Chemistry, (5): – (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . [28] (************************************************************************************************************************************************************************************[ bib ] Stanislaw Karpinski, Carolina Escobar, Barbara Karpinska, Gary Creissen, and Philip M Mullineaux. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in arabidopsis during excess light stress. (The Plant Cell) *************************************************************************************************************************************************************************************************************************************, 9 (4): – 655, 2003. [29] (************************************************************************************************************************************************************************************[ bib ] Henning Kirst, Cinzia Formighieri, and Anastasios Melis. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochimica et Biophysica Acta (BBA) -Bioenergetics [6] ************************************************************************************************************************************************************************************************************************, ([ bib ] : 1661 – (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, ********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [30] (************************************************************************************************************************************************************************************[ bib ] Stephane Lefebvre, Tracy Lawson, Mike Fryer, Oksana V Zakhleniuk, Julie C Lloyd, and Christine A Raines. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiology , 148 (1): – , (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [31] (************************************************************************************************************************************************************************************[ bib ] Myat T Lin, Alessandro Occhialini, P John Andralojc, Martin AJ Parry, and Maureen R Hanson. A faster rubisco with potential to increase photosynthesis in crops. (Nature) , 9493: (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (**************************************************************** (************************************************************************************************************************************************************************************[ bib ] Luke CM Mackinder, Moritz T Meyer, Tabea Mettler-Altmann, Vivian K Chen, Madeline C Mitchell, Oliver Caspari, Elizabeth S Freeman Rosenzweig, Leif Pallesen, Gregory Reeves, Alan Itakura, et al. A repeat protein links rubisco to form the eukaryotic carbon-concentrating organelle. (Proceedings of the National Academy of Sciences) ************************************************************************************************************************************************************************************************************************************, (23: – 7246, (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (**************************************************************** (************************************************************************************************************************************************************************************[ bib ] Peter L Marek, Hermann Sieger, Torsten Scherer, Horst Hahn, and Teodor Silviu Balaban. Self-assembled chromophores within mesoporous nanocrystalline tio2: towards biomimetic solar cells. (Journal of nanoscience and nanotechnology) ************************************************************************************************************************************************************************************************************************************, 9 (6): 3480 – 3998, 2010. (****************************************************************** (************************************************************************************************************************************************************************************[ bib ] I Matsumura, M Patel, and D Greene. Directed evolution of rubisco through genetic selections of metabolically engineered escherichia coli. In (FASEB JOURNAL) ************************************************************************************************************************************************************************************************************************************, volume (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, Pages A – A 350. FEDERATION AMER SOC EXP BIOL (ROCKVILLE PIKE, BETHESDA, MD) ********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** 3818 USA, (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (******************************************************************** (************************************************************************************************************************************************************************************[ bib ] Justin M McGrath and Stephen P Long. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? a theoretical analysis. Plant Physiology , (4): – ******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (********************************************************************** (************************************************************************************************************************************************************************************ Anastasios Melis. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. (Plant science [ bib ] , (4): – (***************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (************************************************************************ (************************************************************************************************************************************************************************************ Timothy C Meredith and Ronald W Woodard. Escherichia coli yrbh is a d-arabinose 5-phosphate isomerase. Journal of Biological Chemistry, (37): – (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 2003. (************************************************************************** (************************************************************************************************************************************************************************************ Jan H Mussgnug, Skye Thomas-Hall, Jens Rupprecht, Alexander Foo, Viktor Klassen, Alasdair McDowall, Peer M Schenk, Olaf Kruse, and Ben Hankamer. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. (Plant Biotechnology Journal) ************************************************************************************************************************************************************************************************************************************, 5 (6): 805 – (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (**************************************************************************** (************************************************************************************************************************************************************************************[ bib ] Juan Nogales, Steinn Gudmundsson, Eric M Knight, Bernhard O Palsson, and Ines Thiele. Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. (Proceedings of the National Academy of Sciences) , (7): – (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 2016. (****************************************************************************** (************************************************************************************************************************************************************************************[ bib ] Alessandro Occhialini, Myat T Lin, P John Andralojc, Maureen R Hanson, and Martin AJ Parry. Transgenic tobacco plants with improved cyanobacterial rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated co2. (The Plant Journal) ************************************************************************************************************************************************************************************************************************************, (1): – 170, (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (******************************************************************************** (************************************************************************************************************************************************************************************[ bib ] Donald R Ort, Xinguang Zhu, and Anastasios Melis. Optimizing antenna size to maximize photosynthetic efficiency. (Plant physiology) , (1) : – (*******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (********************************************************************************** (************************************************************************************************************************************************************************************[ bib ] MAJ Parry, PJ Andralojc, R AfC Mitchell, PJ Madgwick, and AJ Keys. Manipulation of rubisco: the amount, activity, function and regulation. (Journal of experimental botany) , (416: 1518 – 1518, (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (************************************************************************************ (************************************************************************************************************************************************************************************ MAJ Parry, PJ Madgwick, JFC Carvalho, and PJ Andralojc. Prospects for increasing photosynthesis by overcoming the limitations of rubisco. The Journal of Agricultural Science (************************************************************************************************************************************************************************************************************************************, (1): 30, 2009. (************************************************************************************** (************************************************************************************************************************************************************************************ Maria Teresa Fernandez Piedade, SP Long, and Wolfgang Johannes Junk. Leaf and canopy photosynthetic co 2 uptake of a stand of echinochloa polystachya on the central amazon floodplain. (Oecologia) , 107 (2): – (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, ************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. (**************************************************************************************** (************************************************************************************************************************************************************************************[ bib ] G Dean Price and Susan M Howitt. Plant science: Towards turbocharged photosynthesis. (Nature) , 9493: (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (****************************************************************************************** (************************************************************************************************************************************************************************************[ bib ] G Dean Price, Jasper JL Pengelly, Britta Forster, Jiahui Du, Spencer M Whitney, Susanne von Caemmerer, Murray R Badger, Susan M Howitt, and John R Evans. The cyanobacterial ccm as a source of genes for improving photosynthetic co2 fixation in crop species. (Journal of experimental botany) , (3): – 768, 2013. (******************************************************************************************** (********************************************************************************************************************************************************************************** KA Pyke and RM Leech. The control of chloroplast number in wheat mesophyll cells. (Planta) , (3): – 427, 1995. (********************************************************************************************** (************************************************************************************************************************************************************************************ Yonatan Savir, Elad Noor, Ron Milo, and Tsvi Tlusty. Cross-species analysis traces adaptation of rubisco toward optimality in a low-dimensional landscape. (Proceedings of the National Academy of Sciences) ************************************************************************************************************************************************************************************************************************************, (8): – 3809, 2011. (************************************************************************************************ (************************************************************************************************************************************************************************************[ bib ] Jeffrey R Seemann, Murray R Badger, and Joseph A Berry. Variations in the specific activity of ribulose-1, 5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiology , (4): – (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [50] (************************************************************************************************************************************************************************************[ bib ] Robert E Sharwood. Engineering chloroplasts to improve rubisco catalysis: prospects for translating improvements into food and fiber crops. (New Phytologist) , (2): ********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** – (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, 2247. [51] (************************************************************************************************************************************************************************************[ bib ] Patrick M Shih, Jan Zarzycki, Krishna K Niyogi, and Cheryl A Kerfeld. Introduction of a synthetic co2-fixing photorespiratory bypass into a cyanobacterium. Journal of Biological Chemistry, 292 (15: 7519 – (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [52] (************************************************************************************************************************************************************************************[ bib ] Youshi Tazoe, KO Noguchi, and Ichiro Terashima. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a c4 plant, amaranthus cruentus. Plant, Cell & Environment [ bib ] **********************************************************************************************************************************************************************************************************************, (4): 700 – 728, (*******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [53] (************************************************************************************************************************************************************************************[ bib ] Guillaume GB Tcherkez, Graham D Farquhar, and T John Andrews. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. (Proceedings of the National Academy of Sciences) ************************************************************************************************************************************************************************************************************************************, ([ bib ] ): – (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************. [54] (************************************************************************************************************************************************************************************[ bib ] K Uemura, S Miyachi, A Yokota, et al. Ribulose-1, 5-bisphosphate carboxylase / oxygenase from thermophilic red algae with a strong specificity for co2fixation. (Biochemical and biophysical research communications) ************************************************************************************************************************************************************************************************************************************, 276 (2): – (********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, ********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** . [55] (************************************************************************************************************************************************************************************[ bib ] Susanne von Caemmerer and John R Evans. Enhancing c3 photosynthesis. Plant Physiology , 160 (2 ): – (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . [56] (************************************************************************************************************************************************************************************[ bib ] Spencer M Whitney and Robert E Sharwood. Linked rubisco subunits can assemble into functional oligomers without impeding catalytic performance. Journal of Biological Chemistry, (6): – 3998, 2009. (****************************************************************************************************************** (************************************************************************************************************************************************************************************[ bib ] SC Wong, IR Cowan, and GD Farquhar. Stomatal conductance correlates with photosynthetic capacity. (Nature) , 292 (6031: (*************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (****************************************************************************************************************** (************************************************************************************************************************************************************************************[ bib ] X-G ZHU, AR Portis, and SP Long. Would transformation of c3 crop plants with foreign rubisco increase productivity? a computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant, Cell & Environment [ bib ] **********************************************************************************************************************************************************************************************************************, (2): – 170, 2007. (******************************************************************************************************************** (************************************************************************************************************************************************************************************[ bib ] Xin-Guang Zhu, Eric de Sturler, and Stephen P Long. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. (Plant physiology) , 150 (2): – 547, 2009. (********************************************************************************************************************** (************************************************************************************************************************************************************************************[ bib ] Xin-Guang Zhu, Stephen P Long, and Donald R Ort. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? (Current opinion in biotechnology) , (2): 153 – (**********************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************, . (************************************************************************************************************************ (******************************************************************************************************************************************************************************************** (****************************************************************************************************************************************** (******************************************************************************************************************************************               bib ] ******************************************************************************************************************************** (************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** (****************************************************************************************************************************** (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** (Read More) ******************************************************************************************************************************** (****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************(******************************************************************************************************************************

    (****************************************************************************************************************************************************************************************** (Add Green & Infrared Antennae Proteins) Unused Solar Radiation (**************************************************************************************************************************************************************************************** (Photon Capture) ******************************************************************************************************************************************************************************************* (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** (%) ****************************************************************************************************************************************************************************************** (******************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************% of solar energy outside of accceptable wavelengths. Some photosynthetic bacteria (bastochloris viridis & cyanobacteria acaryochloris) have antennae tailored for near-infrared wavelengths (768 – (nm). (************************************************************************************************************************************************************************************** (**************************************************************************************************************************************************************************************** (Avoid Expensive Antennae Synthesis.) ************************************************************************************************************************************************************************************** (Poor resource allocation.) (Photon Capture) ******************************************************************************************************************************************************************************************* (**************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************** (%) Some antennae proteins are expensive to synthesize. Recently, novel cyanobacterial strain was found that reduced doubling time from 4.9hrs to 1.5hrs. Only differed by 61 bps. Didn’t use expensive antennae (phycobilisome); Instead, key proteins of electron transport chain (plastocyanin, cytochrome b6f, etc …) were expressed at 1.5-2.7 higher levels. 51% improvement in efficiency from photosystem II led to a 3x reduction in the doubling rate. (************************************************************************************************************************************************************************************Modify Photosynthesis Inhibition Regulation. (**************************************************************************************************************************************************************************************** Slow recovery from excessive light.