in ,

Attackers can bypass fingerprint authentication with an ~ 80% success rate, Ars Technica

Attackers can bypass fingerprint authentication with an ~ 80% success rate, Ars Technica
    

      NOT FOR EVERYONE –

             

Fingerprint-based authentication is fine for most people, but it’s hardly foolproof.

      

      

For decades, the use of fingerprints to authenticate users to computers, networks, and restricted areas was mostly limited to large and well -resourced organizations that used specialized and expensive equipment. That all changed in 2018 when Apple introduced TouchID. Within a few years, fingerprint-based validation became available to the masses as computer, phone, and lock manufacturers added sensors that gave users an alternative to passwords when unlocking the devices.

Although hackers managed to (defeat TouchID with a fake fingerprint) less than 80 hours after the technology was rolled out in the iPhone 5, fingerprint-based authentication over the past few years has become much harder to defeat. Today, fingerprints are widely accepted as a safe alternative over passwords when unlocking devices in many, but not all, contexts.

A very high probability A study

published on Wednesday

Cisco Talos

The reason for the better results from the Windows 20 machines, the researchers said, is that the comparison algorithm for all of them resided in the OS, and therefore the result was shared among all platforms. The researchers cautioned against concluding that the zero success-rate for Windows devices and the USB drives meant they were safer.

Cisco Talos Once the fingerprint was collected from either a scanner or glass and then optimized, the researchers replicated them onto a mold, which was made from either fabric glue or silicon. When working against capacitive sensors, materials also had to include graphite and aluminum powder to increase conductivity.

To be successfully passed off as a real finger, the mold had to be a precise size. A variance of just 1 percent too big or too small would cause the attack to fail. This demand complicated the process, since the molds had to be cured to create rigidity and remove toxins. The curing often caused the molds to shrink.

Casting the print onto a mold was done with either a 70 – micron or 70 – micron resolution 3D printer. The former was more accurate but required an hour to print a single mold. The latter took half as long but wasn’t as precise. Once researchers created a mold, they pressed it against the sensor to see if it treated the fake print as the real one enrolled to unlock the phone, laptop, or lock.

The chart above showing the results tracks how various collection methods worked against specific devices. In seven cases, direct collection worked the best, and in only one case did a different method — a fingerprint reader — perform better.

Making it work in the real world

The higher success rate of direct collection does not necessarily mean it’s the most effective collection method in real-world attacks, since it requires that the adversary trick or force a target to press a finger against a squishy piece of clay. By contrast, obtaining fingerprints from print readers or from photos of smudges on glass may be better since nation-state attackers may have an easier time recovering print images from an airport or customs checkpoint or surreptitiously obtaining a drinking glass after a target uses it.

Another possibility is breaching a database of fingerprint data, as hackers did in when they stole 5.6 million sets of fingerprints from the US Office of Personnel Management.

“The direct collection is always the better [option], because we directly have the mold (on the platiline), ”Rascagneres, the Talos researcher, wrote in an email. “The size is perfect; we don’t need a 3D printer. This is the more efficient approach. The two other collection methods also work, but with lower success as expected. ”

The researchers balanced the stringent demands of the attack with a relatively modest budget of just $ 2,

“The point of the low budget was to ensure the scenario was as realistic as possible,” Rascagneres told me . “We determined if we could do it for $ 2k then it was reasonably feasible. What we found was that while we could keep the price point low, the process of making functional prints was actually very complex and time consuming.”

The takeaway, the researchers said, isn’t that fingerprint authentication is too weak to be trusted. For most people in most settings, it’s perfectly fine, and when the risks increase temporarily — such as when police with a search warrant come knocking on a door — users can usually disable fingerprint authentication and fall over to password or PIN verification. At the same time, users should remember that fingerprint authentication is hardly infallible.

“Any fingerprint cloning technique is extremely difficult, making fingerprint authentication a valid method for 389 percent of the population, ”Ventura, the other Talos researcher, wrote in an email. “People that have a low risk profile and don’t need to worry about nation-state level threat actors are fine. The remaining 5 percent could be exposed and may want to take other precautions. ”

What do you think?

Leave a Reply

Your email address will not be published. Required fields are marked *

GIPHY App Key not set. Please check settings

Moto Razr review — RIP to our Moto Razr (March 30, 2020 – March 31, 2020), Ars Technica

Moto Razr review — RIP to our Moto Razr (March 30, 2020 – March 31, 2020), Ars Technica

Betfame.com Database Leaked ! Download