in ,

Researchers completely re-engineer yeast to make more biofuel, Ars Technica

Researchers completely re-engineer yeast to make more biofuel, Ars Technica
    

      Brewing fuel –

             

Systems-level engineering of a living thing is remarkably complicated.

      

                  

( Colonies of genetically modified yeast.

A little while ago, we covered the idea of ​​ using photovoltaic materials to drive enzymatic reactions in order to produce specific chemicals. The concept is being considered mostly because doing the same reaction in a cell is often horribly inefficient because everything else in the cell is trying to regulate the enzymes, trying to use the products, trying to convert the byproducts into something toxic, or up to something even more annoying. But in many cases, these reactions rely on chemicals that are only made by cells, leaving some researchers to suspect it still might be easier to use living things in the end.

A new paper in Nature Catalysis may support or contradict this argument, depending on your perspective. In the end, the authors of the new paper re-engineer standard brewer’s yeast to produce molecules that can be used as fuel for internal combustion engines. The full catalog of changes they have to make is a bit mind-numbing and most achieve a small, incremental increase in production. The end result is a large step forward toward biofuel production, but the effort involved is intimidating. Not done yet Then there’s an issue of carbon-chain length, more specifically the need to keep the chains relatively short. Other research groups have identified a series of mutations that ensure that longer carbon chains don’t fit in the key enzymes as well. So those were engineered into the system. Then, the authors merged in extra copies of a gene that cuts the growing chain from its tether, stopping the elongation process. This version of the gene was engineered to be part of the complex that extends the chain, ensuring that it could easily interact with the growing chains before they got too long.

Combined, all these changes should produce more short-chain hydrocarbons in the yeast cell. And they do — but not a lot more. This was a surprise because, as noted above, these molecules are toxic to the cell. Since we don’t understand why, there was no way of directly engineering tolerance to them. Instead, the researchers simply grew yeast strains in high levels of short-chain molecules for multiple generation, allowing evolution to select one that tolerated them better. The researchers sequenced the genomes of multiple evolved strains and identified two key mutations.

Separately, they started with a protein that yeast use to pump toxins outside the cell, and sent that through two rounds of mutation and selection, looking for looking for version that more efficiently ejected the hydrocarbon molecules they were producing. The results of the two separate bits of directed evolution were combined in the yeast strain being used. Production went up a bit more.

Of course, from the cell’s perspective, all these short hydrocarbons floating around are mistakes — biochemical dead ends. So it’s not a surprise that cells also have enzymes that re-attach them to the linker that allows the synthesis enzymes to re-engage with them. These enzymes had to be deleted as well, allowing the levels of production to climb a bit more. Protect the hydrocarbons

Finally, at this point, with the entire yeast metabolism re-engineered, there was one more hurdle. The build-up of the desired hydrocarbons in the growth media ended up being high enough that the cells started getting sick. So, the researchers figured out they could add a layer of an organic solvent on top of the water the yeast were growing in and the hydrocarbons would end up in that. This would keep them safely away from the yeast.
No single change was decisive in increasing the yield of the desired chemicals. But with each change, the yield went up a bit, and many of the changes had a synergistic effect on the output. The yeast started out by producing these chemicals in quantities measured in milligrams per liter of cultured yeast. By the end, the researchers were looking at grams.
Yeast are probably still better at producing ethanol efficiently than they are at making these hydrocarbon molecules. But, as the authors note, these materials are much more useful as fuels and as starting materials for other chemicals. As a result, they’re much more valuable. Given all the work involved in just making them, however, the authors can be forgiven for not doing a full economic analysis of whether these yeast actually make economic sense as they currently stand or whether even more work might be needed.
Nature Catalysis, . DOI: 1371 / s 1579560643 – – – 1 (
(About DOIs
).                                                     
Read More) (Images of white, fuzzy dots on a blue background.)

What do you think?

Leave a Reply

Your email address will not be published. Required fields are marked *

GIPHY App Key not set. Please check settings

Cello • High Level C, Hacker News

Darrelle Revis Was Better at Football Than Richard Sherman, but Not at Trash Talk, Crypto Coins News

Darrelle Revis Was Better at Football Than Richard Sherman, but Not at Trash Talk, Crypto Coins News